skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hosseini, Matin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Variation in solar irradiance causes power generation fluctuations in solar power plants. Power grid operators need accurate irradiance forecasts to manage this variability. Many factors affect irradiance, including the time of year, weather and time of day. Cloud cover is one of the most important variables that affects solar power generation, but is also characterized by a high degree of variability and uncertainty. Deep learning methods have the ability to learn long-term dependencies within sequential data. We investigate the application of Gated Recurrent Units (GRU) to forecast solar irradiance and present the results of applying multivariate GRU to forecast hourly solar irradiance in Phoenix, Arizona. We compare and evaluate the performance of GRU against Long Short-Term Memory (LSTM) using strictly historical solar irradiance data as well as the addition of exogenous weather variables and cloud cover data. Based on our results, we found that the addition of exogenous weather variables and cloud cover data in both GRU and LSTM significantly improved forecasting accuracy, performing better than univariate and statistical models. 
    more » « less